目前随着化肥、石油化工等行业的迅速发展壮大,由此而产生的高氨氮废水也成为行业发展制约因素之一;据报道,2001年我国海域发生赤潮高达77次,氨氮是污染的重要原因之一,特别是高浓度氨氮废水造成的污染。因此,经济有效的控制高浓度污染也成为当前环保工作者研究的重要课题,得到了业内人士的高度重视。氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上pH在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,pH在酸性的条件下废水中的氨氮主要由于无机氨所导致。废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。
废水处理工艺
工业废水处理设备给水曝气生物滤池利用大颗粒轻质陶粒滤料在升流条件下对原水中ss截滤率低、过滤水头损失一般不**过5kPa、冲洗前后的过滤水头变化小的特点,适当降低对滤料比表面积指标的要求,大幅提高滤速至16~20m/h,气水比为0~0.5。在大颗粒轻质陶粒滤料表面生物膜的生化与截滤双重作用下,预处理出水氨氮<0.5mg/L,为微污染源水的处理提供了一种高效、节能、省地的处理工艺。
处理方法
现有膜处理工艺,出水效果不稳定
“生化+双级DTRO”和“生化+MBR+纳滤(NF)+反渗透(RO)”膜处理工艺,是目前国内垃圾渗滤液行业除氨氮采用的主流技术。垃圾渗滤液经过前端生化以及混凝沉淀,后经两级DTRO膜或纳滤+反渗透等膜工艺进行浓缩分离。但由于前端生化的不稳定性以及渗滤液的复杂性,膜进水含量易变,因此出水水质稳定性差,出水较低可将氨氮降到25--30ppm左右(DTRO)或10ppm左右(NF+RO),不能达到排放标准5(8)ppm。
提供技术**,添补工艺缺陷
科海思结合国外先进技术,深耕垃圾渗滤液行业难点、痛点,基于Tulsimer ®T-42H特种除氨氮树脂的特性,与现有膜处理工艺**结合,提出了膜后出水氨氮深度处理解决方案。
在双级DTRO或RO膜后采用科海思Tulsimer ®T-42H特种除氨氮树脂,在保证出水效果稳定性的前提下,可将氨氮含量降低到1ppm以下,远远低于国家出水指标要求,为垃圾渗滤液深度处理提供了技术**。同时,由于树脂的浓缩倍数较大,因此树脂浓水产量较少,在相当程度上实现了浓水减量化,添补了垃圾渗滤液处理的工艺缺陷。
开创膜后除氨氮新模式,科海思为渗滤液处理行业保驾**!
氨氮废水处理,除氨氮**树脂T-42H,氨氮处理**设备,氨氮深度处理设备
科海思结合国外先进技术,深耕垃圾渗滤液行业难点、痛点,基于Tulsimer ®T-42H特种除氨氮树脂的特性,与现有膜处理工艺**结合,提出了膜后出水氨氮深度处理解决方案。
对氨氮有较强的亲肤性,吸附容量大,使用寿命长,充分的解决了氨氮在提标改造上的问题,出水可以做到0.1ppm
开创膜后除氨氮新模式,科海思为渗滤液处理行业保驾**!
在经济快速发展的过程中,由于城镇垃圾成分复杂,受经济发展水平、自然条件及传统习惯等在经济快速发展的过程中,由于城镇垃圾成分复杂,受经济发展水平、自然条件及传统习惯等因素的影响,主要对城镇垃圾进行填埋处理。垃圾渗滤液就是在堆放和填埋过程中由于发酵和雨水淋溶、冲刷以及地表水和地下水的浸泡而产生的二次污染,其水质水量会随填埋场的年龄、季节变换而变换。由于技术与资金等原因,大部分垃圾渗滤液排放的废水只经简单处理甚至未经处理就直接排入江河等水体中,含有高浓度的氨氮等物质,并不断地在水体中累积,较终导致水体富营养化,破坏水体生态平衡。
现有膜处理工艺,出水效果不稳定
“生化+双级DTRO”和“生化+MBR+纳滤(NF)+反渗透(RO)”膜处理工艺,是目前国内垃圾渗滤液行业除氨氮采用的主流技术。垃圾渗滤液经过前端生化以及混凝沉淀,后经两级DTRO膜或纳滤+反渗透等膜工艺进行浓缩分离。但由于前端生化的不稳定性以及渗滤液的复杂性,膜进水含量易变,因此出水水质稳定性差,出水较低可将氨氮降到25--30ppm左右(DTRO)或10ppm左右(NF+RO),不能达到排放标准5(8)ppm。
浓缩水不断回灌,处理难上加难
膜处理渗滤液过程中会产生大量浓水,成份复杂,污染物浓度高,生化性差,于是无处安放的浓水只能回灌到垃圾堆中,自行消化大部分污染物,随后继续形成渗滤液进入渗滤液处理系统。浓水不断回灌,导致原有垃圾堆形成的渗滤液成分更复杂,处理难度更高,这也是老垃圾填埋场比新垃圾填埋场的渗滤液更难处理的原因所在。
提供技术**,添补工艺缺陷
科海思结合国外先进技术,深耕垃圾渗滤液行业难点、痛点,基于Tulsimer ®T-42H特种除氨氮树脂的特性,与现有膜处理工艺**结合,提出了膜后出水氨氮深度处理解决方案。